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Abstract
Denitrification is a crucial process in the global nitrogen cycle, in which two func-
tionally equivalent genes, nirS and nirK, catalyse the critical reaction and are usu-
ally used as marker genes. The nirK gene can function independently, whereas nirS 
requires additional genes to encode nitrite reductase and is more sensitive to en-
vironmental factors than nirK. However, the ecological differentiation mechanisms 
of those denitrifying microbial communities and their adaptation strategies to envi-
ronmental stresses remain unclear. Here, we conducted metagenomic analysis for 
sediments and bioreactor samples from Lake Donghu, China. We found that nirS-
type denitrifying communities had a significantly lower horizontal gene transfer 
frequency than that of nirK-type denitrifying communities, and nirS gene phylogeny 
was more congruent with taxonomy than that of nirK gene. Metabolic reconstruc-
tion of metagenome-assembled genomes further revealed that nirS-type denitrify-
ing communities have robust metabolic systems for energy conservation, enabling 
them to survive under environmental stresses. Nevertheless, nirK-type denitrify-
ing communities seemed to adapt to oxygen-limited environments with the abil-
ity to utilize various carbon and nitrogen compounds. Thus, this study provides 
novel insights into the ecological differentiation mechanism of nirS and nirK-type 
denitrifying communities, as well as the regulation of the global nitrogen cycle and 
greenhouse gas emissions.
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1  |  INTRODUC TION

Denitrifying bacteria contribute significantly to nitrogen removal 
in diverse aquatic ecosystems, in which two structurally dissimi-
lar nitrite reductases mainly catalyse the conversion of nitrite to 
nitric oxide, the haeme-cytochrome type NirS and the copper-
containing type NirK (Braker et  al.,  2000; Helen et  al.,  2016; 
Priemé et al., 2002). Nitrite reductase encoded by the nirS gene re-
duces nitrite via cytochrome cd1, a dimer of haeme c and haeme d1 
subunits. In canonical denitrification, as observed in Pseudomonas 
aeruginosa, cytochrome cd1 catalyses the oxidation of a colo-
calized cytochrome c551 to reduce nitrite to nitric oxide at the 
haeme d1 site. The nirS gene has been reported as a constituent 
of a larger gene cluster containing genes such as nirF, which en-
code biosynthetic proteins for haeme d1 (Kawasaki et  al., 1997; 
Philippot, 2002). The gene cluster also includes the nitrite trans-
porter genes such as nirM and nirC (Hasegawa et  al.,  2001). On 
the contrary, NirK can function independently without assistance 
from other components. Although these two phylogenetically dis-
tinct enzymes share similar functions, the two nir systems were 
reported to be incompatible, and denitrifiers were divided into 
two groups based on whether they possess nirS or nirK (Jones 
et al., 2008). Recently, strains with genes containing both reduc-
tases have been found, and physiological results indicate that nirS 
and nirK show different activities depending on the cultivating 
conditions (Liu et al., 2020; Wittorf et al., 2018). However, in some 
cases, these reductases are found to have functional redundancy 
(Sánchez & Minamisawa, 2018).

There are also differences in the ecological distribution of 
nirS and nirK genes in ecosystems. For example, the nirS-type 
denitrifying community has been more active and dominant in 
soils, freshwater, marine ecosystems and extreme habitats (Graf 
et al., 2014; Jones & Hallin, 2010; Sun & Jiang, 2022). However, 
it is more sensitive to environmental changes. In contrast, re-
search indicates that the nirK-type denitrifying community is 
mainly host-associated (Graf et  al.,  2014) and adaptable to fluc-
tuating environments (Sun & Jiang,  2022). Considering abiotic 
factors, nirS gene abundance responds to nitrate and salinity and 
shows a higher affinity for nitrite (Goberna et  al., 2021; Rinaldo 
& Cutruzzolà,  2007), whereas nirK abundance in soil denitrifiers 
responds significantly to iron content (Goberna et al., 2021). These 
observations indicate that two types of denitrifying communities 
may have different adaptation strategies to the environmental 
conditions. Another interesting case found that nirS- and nirK-type 
denitrifying communities in Lake Donghu showed opposite chang-
ing patterns in response to environmental stresses in bioreactors 
(Zhang et al., 2023). The nirS-type denitrifying communities, which 
exhibit high diversity and abundance in sediments, experienced 
a notable decrease in taxonomic diversity during cultivation in 
bioreactors. In contrast, the diversity of the nirK-type denitrifying 
community increased in cultures (Zhang et al., 2023). Therefore, 

such an opposing phenomenon led us to speculate how different 
environmental conditions and evolutionary factors influence the 
adaptation of nirS and nirK communities.

In this study, we hypothesize that the distinct phylogeny and 
metabolic characteristics drive the niche differentiation of two 
types of denitrifying microbial communities. We used metage-
nome sequencing data from Lake Donghu sediment and corre-
sponding bioreactor samples to test this hypothesis. First, we 
examined the phylogenetic community structure to understand 
whether the phylogenetic lineage distribution preference of dif-
ferent nirS- and nirK-type denitrifying communities contributes to 
adaptation strategies. Horizontal gene transfer (HGT) is thought 
to be an essential driving force for microbial evolution and niche 
adaptation. Therefore, we identified the potential HGT events and 
predicted the transferred gene functions in microbial communi-
ties. We also reconstructed the metabolic potentials for these 
two groups to reveal their response patterns to environmental 
stresses. Our study advances the understanding of niche parti-
tioning of nirS- and nirK-type denitrifying communities in response 
to environmental changes.

2  |  MATERIAL S AND METHODS

2.1  |  Experimental design, sampling and 
physicochemical analysis

To investigate the ecological adapting strategies of denitrifying 
communities in lake ecosystems, we performed nitrogen-removal 
bioreactors with lake sediments from a typical eutrophic lake, 
Lake Donghu (Wuhan, China). The subsurface sediment samples 
with different trophic levels were collected from five sites using a 
gravity sampler (Zhang et al., 2022). A total of 25 sediment sam-
ples were collected for environmental measurements. Four an-
aerobic bioreactors were performed with subsurface sediments 
from four sites. Each 5 L bioreactor was seeded with 1.0 kg lake 
sediments and regularly fed with the inorganic nutrient medium 
containing NO−

2
 and NH+

4
. The bioreactors were maintained for 

more than 1 year, which could be divided into three phases based 
on the NH+

4
 and NO−

2
 removal efficiencies (Figure  S1) (Phase 1: 

1–120 days; Phase 2: 121–180 days; Phase 3: 181–371 days) (Zhang 
et al., 2023). We used lake sediments and bioreactor samples col-
lected at 120, 180 and 371 days for further metagenomic analy-
sis. Corresponding physical and geochemical data were obtained, 
which showed noticeable environmental changes from natural 
conditions to bioreactors (Zhang et  al.,  2023). Briefly, dissolved 
oxygen (DO) in water contact with sediment, temperature and 
pH in the sediments were measured in situ by a handheld meter 
(Extech Instruments, A FLIR Company, USA) (Zhang et al., 2023). 
The concentrations of NH+

4
, NO−

2
 and NO−

3
 were measured by an ion 

chromatography meter (ICS-600; Thermo, USA). The elemental 
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analyser (Vario TOC; Elemental, Germany) was used to measure 
the sediments' total carbon (TC).

2.2  |  Metagenome sequencing, assembly and 
analysis

Total genomic DNA extraction was performed according to our 
previous study (Zhang et  al.,  2023). Raw sequencing data were 
trimmed using Trimmomatic v0.38 (Bolger et  al.,  2014). The fil-
tered reads with an average quality score >20 were further as-
sembled into contigs by MEGAHIT (v1.2.9). All resulting contigs 
were binned using Metabat2 and MaxBin2 and improved using 
the Bin_refinement and Reassemble_bins module in metaWRAP 
(Uritskiy et  al.,  2018). Metagenome-assembled genomes (MAGs) 
with completeness >50% and contamination <10% were kept for 
further analyses based on the estimation of CheckM (v1.0.12) 
(Parks et al., 2015). GTDB-tk was used to perform taxonomic an-
notation for MAGs based on the Genome Taxonomy Database 
GTDB-r202 (Chaumeil et  al.,  2020). Putative protein-coding se-
quences (CDSs) of each genome were predicted using Prodigal 
v2.6.3 with the ‘-p meta’ parameter (Hyatt et al., 2010), and the 
CDSs were annotated against the Cluster of Orthologous Groups 
of proteins (COG) and the Kyoto Encyclopaedia of Genes and 
Genomes Orthology (KEGG) databases using DIAMOND by apply-
ing e-values <10−5 (Buchfink et al., 2015). The relative abundance 
of MAG representatives in the metagenomes was calculated by 
‘coverm genome’ module in CoverM v0.7.0 (https://​github.​com/​
wwood/​​CoverM) with default settings.

2.3  |  Phylogenetic analysis

The genomes with estimated completeness >50% and contamina-
tion <10% were kept for phylogenetic analysis. The phylogeny of 
MAGs from the sediments of Lake Donghu and bioreactor samples 
were analysed according to previous studies (Jiao et  al.,  2022). 
Multiple sequence alignment (MSAs) of 120 bacterial marker 
genes were generated by GTDB-Tk and used to construct a phy-
logenetic tree using IQ-Tree (v.1.6.12) with parameters (-m MFP 
-nt 20 -bb 1000) (Nguyen et al., 2015). LG+F+R10 was selected as 
the best-fit model for subsequent phylogenetic estimates accord-
ing to the Akaike Information Criterion (AIC), Corrected Akaike 
Information Criterion (Corrected AIC) and Bayesian Information 
Criterion (BIC) (Kalyaanamoorthy et  al.,  2017). Reference ge-
nomes were downloaded from the NCBI datasets for the phylog-
eny of nirS or nirK genes. Then, sequences for each gene were 
identified and translated, as mentioned above. Protein sequences 
were further aligned using MAFFT (Katoh & Standley, 2013), and 
maximum likelihood phylogenetic trees were constructed using 
IQ-Tree with parameters (-m MFP -nt AUTO -bb 1000 -alrt 1000). 
All phylogenetic trees were visualized and annotated using iTOL 
(Letunic & Bork, 2016).

2.4  |  Identification of horizontal gene transfer and 
visualization

To identify HGT events within the Lake Donghu and bioreactor 
microbial community, we used MetaCHIP (v.1.9.0) to detect HGT 
events among all MAGs (Song et al., 2019). Briefly, each predicted 
gene aligned using the best-match method was compared among 
taxa based on the defined phylogenetic tree. Then, the gene was 
identified as a candidate gene for HGT if the best match came 
from the non-self-group. The putative HGT was then refined by 
the phylogenetic approach, which allowed us to identify the direc-
tion of gene flow. The gene flow networks within the community 
were visualized at phylum and class levels using the ‘Circlize’ pack-
age in R (Hu et al., 2014). Horizontally transferred functions were 
predicted by analysing protein sequences on the KEGG Automatic 
Annotation Server (KAAS) with ‘single-directional best hit’ and 
‘for prokaryotes’ parameters (Moriya et al., 2007) and eggNOG-
mapper concerning the eggNOG 5 database (Cantalapiedra 
et al., 2021).

3  |  RESULTS

3.1  |  Phylogenetic composition and genomic 
analysis of the recovered MAGs

A total of 284 MAGs (completeness >50%, contamination <10%) 
were obtained after quality filtering and dereplication (Table  S1). 
Taxonomic classification showed that only 25 (8.8%) and 4 (1.4%) 
MAGs could be classified as known genera and species, respec-
tively (Table  S2). The most abundant phylum (17.2%) among 
MAGs was Proteobacteria (49), of which the most abundant group 
belongs to the order Burkholderiales (20). The second most abun-
dant phylum (15.4%) among MAGs was Chloroflexota (44), and 
more than half belong to Anaerolineales. In addition, 22 Archaeal 
MAGs were recovered, most belonging to Thermoproteota (8) and 
Halobacteriota (7). Twenty MAGs were retrieved from bioreac-
tor samples. They were from Chloroflexota (5), Patescibactria (4), 
Bacteroidota (2), Proteobacteria (2), Zixibacteria (2), Acidobacteria (1), 
Gammatimonadetes (1), Planctomycetota (1), Elusimicrobiota (1) and 
one phylum-unsigned genome.

Based on the genes of denitrification pathways present in 
each genome, a total of 152 MAGs were identified as putative 
denitrifying bacteria, with 26 encoding nirS and 32 encoding 
nirK (Figure  1). The nirS-type denitrifying genomes retrieved 
from Lake Donghu sediment were mainly distributed in five 
classes, namely Gammaproteobacteria (20), Anaerolineae (2), 
Alphaproteobacteria (1), Actinomycetia (1). However, the taxonomy 
of nirK-type denitrifying community was more diverse, including 
Anaerolineae (8), Limnocylindria (5), Nitrospiria (5), Acidimicrobiia (4), 
Gemmatimonadetes (2), Alphaproteobacteria (1), Bathyarchaeia (1), 
and two class unsigned genomes. After cultivation, only two ge-
nomes belonging to class Anaerolineae and Baterodia encoded nirS. 
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Moreover, four genomes encoding nirK belonged to Anaerolineae 
(2), Brocadiae (1) and Gammaproteobacteria (1). Notably, we also 
found that one genome, DH_sed_bin.72 from Alphaproteobacteria, 
encoded both nirS and nirK genes. Then, we showed that the nirK-
type denitrifying community was more adaptable to environmental 
changes, and most of their relative abundance increased in the 
first two stages (Phase 1 and Phase 2) (Figure S1). In contrast, the 
nirS-type denitrifying community grew well mainly in the middle 
stage (Phase 2).

3.2  |  Functional analysis of horizontal gene 
transfer

To study whether HGT contributes to denitrifying microbial com-
munities adapting to the environment, we calculated the potential 
HGT events using the MetaCHIP algorithm. We detected 1423 
transfer events between 30 different taxonomic phyla, where 239 
HGT events showed identity >80% (Figure  2a, Table  S3). Inter-
phylum HGT frequently happened except for Nitrospira mem-
bers. Proteobacteria and Acidobacteriota were the prominent gene 

donors in the communities. Besides, the phyla that encounter 
fewer HGT events tend to be the primary gene recipients, such as 
Verrucomicrobiata, Zixibacteria, Bacteroidota, Halobacteriota and 
Krumholzibacteria. A similar pattern was also observed at the class 
level. To measure the frequency of HGT events in each MAG, we 
first classified genomes according to their denitrifying abilities into 
four categories: nirS-type denitrifiers, nirK-type denitrifiers, other 
potential denitrifiers (genomes encoding other denitrifying genes 
except nir genes, i.e., narG, narH, narI, napA, napB, norB, norC, nosZ), 
and non-denitrifiers (genomes not encoding any denitrifying gene). 
The result showed that the frequency of receiving genes by nirS-type 
denitrifiers was lower than the other three groups (Figure 2b), and 
there was no significant difference between the other three groups.

To identify the functions of HGT genes involved in microbial 
adaption to environmental stress, we annotated genes transferred 
between sediment MAGs to 530 unique COG functions. In compar-
ison, 987 genes could be assigned to 580 unique KEGG functions 
(Figure  S1a). Functional annotation against the COG database re-
vealed that the functions belonging to lipid (I) and inorganic ion (P) 
transport and metabolism were preferentially subject to HGT be-
tween nirS-type MAGs. Accordingly, carbohydrate transport and 

F I G U R E  1 Phylogenetic relationships of 264 bacterial MAGs (completeness >50%, contamination <10%) based on 120 bacterial marker 
genes (Parks et al., 2017). The nodes with a bootstrap value >80% are indicated as black solid dots. Internal branches of the tree are 
coloured by phylum. The red triangles represent the genomes retrieved from bioreactor samples. The outer heatmap shows the estimated 
genome quality. The bar plot displays the number of denitrifying genes (narG, narH, narI, napA, napB, nirS, nirK, norB, norC, nosZ) present in 
each genome, among which nirS and nirK genes denoted by different colours.
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F I G U R E  2 Identification and functional prediction of horizontal gene transfer (HGT) events in microbial communities. (a) HGT with high 
identity (>80%) between metagenome-assembled genomes (MAGs) of different phyla was visualized. The two rings are coloured by MAG 
taxonomic affiliation, going from phylum to class and from outer to inner rings. The bands connect the various taxa, with the width of the 
bands correlating to the number of HGT events. The band arrows direct the HGT gene flows from donors to recipients. (b) HGT frequencies 
among different groups in microbial communities were compared. Each dot represents a recipient genome. Significant differences in HGT 
frequency between the two groups are denoted with asterisks (Wilcoxon test, *p < .05; **p < .01).
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metabolism (G) and cell wall/membrane/envelope biogenesis (M) 
were enriched for HGT in nirK-type MAGs. We further found differ-
ences in the functions of shared genes obtained between nirS- and 
nirK-type denitrifying communities (Figure S2). Briefly, the nirS-type 
denitrifying community obtained more genes involved in lipid (I) and 
inorganic ion (P) transport and metabolism. In comparison, nirK-type 
denitrifying community obtained more genes involved in carbohy-
drate transport and metabolism (G) and cell wall/membrane/envelop 
biogenesis (M). These results indicated that HGT may contribute to 
two types of denitrifying communities adapting to diverse environ-
ments through different metabolic strategies.

3.3  |  Different evolutionary patterns between 
nirS and nirK genes

To investigate complete evolutionary histories, we constructed 
the maximum-likelihood phylogenies for nirS and nirK genes with 
reference sequences in the public database. The NirK protein 

phylogeny includes three main clades and sequences from Lake 
Donghu microbial communities were present in all three clades 
(Figure  3). The NirK sequences of the phylum Chloroflexota, 
Nitropspira and Proteobacteria were assigned to two clades, sug-
gesting diverse evolutionary origins. The protein sequence from 
DH_sed_bin.244 was the only Nitrospira NirK placed within a 
cluster of Gemmatimonadota and Eisenbacteria, suggesting poten-
tial HGT events from diverse phyla to Nitrospira members. The 
NirK from Planctomycetota enrich_bin97 was identified within the 
Chloroflexota group, indicating its potential acquisition from this 
group. One NirK from Actinobacteria DH_sed_bin.108 was identi-
fied as a sister branch to the lineage of Nitrospira. Additionally, the 
NirK of Gemmatimonadota and Actinobacteriota remained mono-
phyletic, supporting that they may have obtained the nirK gene 
through vertical inheritance but with multiple gene loss events. 
These results suggested a complex evolutionary history of NirK 
with diverse donors.

The maximum-likelihood phylogeny of NirS identified that 
Bacteroidota enrich_bin13 was monophyletic with Bacteroidate 

F I G U R E  3 Consistency between the phylogenomic trees of the whole communities and the phylogeny of NirK. (a) The phylogenetic 
tree of Lake Donghu microbial communities was constructed as in Figure 1. The red square represents the MAGs with nirK genes. (b) The 
maximum likelihood tree of the NirK protein. Collapsed groups are labelled with taxonomic group names and are coloured according to the 
legends.
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groups in both trees (Figure  4). A similar result was also found in 
Chloroflexota DH_sed_bin.350 and enrich_bin11, which were placed 
within the Chloroflexota clusters. These suggested that the synteny 
of nirS genes within Bacteroidota and Chloroflexota were conserved. 
The phylogeny of NirS identified Proteobacteria as the most deeply 
branching group. The sequences from Proteobacteria comprised the 
most basal groups of two trees and were identified in separate clus-
ters of Proteobacteria in this polyphyletic region. Actinobacteriota 
DH_sed_bin.124 resided on a deep branch sister to a Proteobacteria 
lineage, potentially suggesting the gene transfer from Proteobacteria 
to this Actinobacteriota genome. The maximum-likelihood phylogeny 
of NirS recovered the monophyly of Bacteroidota and Chloroflexota 
sequences except for one Actinobacteria sequence, indicating nirS 
genes were mainly inherited vertically.

3.4  |  The metabolic potential for denitrifying 
communities to adapt to environmental stresses

From natural Lake Donghu to bioreactor systems, many environmen-
tal factors were changed as selective pressures on microbial growth. 

For example, the incubation temperature in bioreactors increased by 
about 5°C compared to the water temperature in the lake. Although 
the NO−

2
 showed considerable variations in Lake Donghu sediment, 

ranging from 2.65 to 12.43 mg·N/kg, its concentration in bioreac-
tors was maintained at 30 mg·N/L. However, the concentration of 
NH

+

4
 decreased during the transition from the eutrophic lake (15.7–

66.81 mg·N/kg) to bioreactors (10 mg·N/kg). The total carbon (TC) in 
Lake Donghu ranged from 28.34 to 48.82 mg/g. At the same time, 
bioreactors were continuously supplemented with inorganic syn-
thetic wastewater to eliminate the organic matter in the systems, 
which means the organic carbon was rapidly depleted at the very 
first stage (Zhang et al., 2023). Therefore, we hypothesized that two 
denitrifying groups may have particular physiological patterns con-
tributing to their survival in response to environmental stress, such 
as warming, oxidative stress and nitrite toxicity.

To test our hypothesis, we examined the metabolic character-
istics of nirS- and nirK-type denitrifying communities (Figure  5, 
Table S4). The cytochrome bc1 complex, also known as complex III, 
is an essential segment of the electron transfer chain of the respi-
ratory process, which catalyses electron transfer from ubiquinol or 
menaquinol to c-type cytochrome, providing a proton gradient and 

F I G U R E  4 Consistency between the phylogenomic tree of the whole communities and the phylogeny of NirS. (a) The phylogenetic 
tree of Lake Donghu microbial communities was constructed as in Figure 1. The red circle represents the MAGs with the nirS gene. (b) The 
maximum likelihood tree of the NirS protein. Collapsed groups are labelled with taxonomic group names and are coloured according to the 
legend.
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membrane potential for ATP synthesis. The cytochrome reductase 
encoded in nirS-type MAGs is predominantly ubiquinol-cytochrome 
c reductase. We identified 13 of 26 nirS-type denitrifiers encoded 
genes for complete ubiquinol-cytochrome c reductase (UQCRFS1, 
CYTB, CYC1), while only one nirK-type genomes enrich_bin97 
contained all three genes for ubiquinol-cytochrome c reductase 
(Figure 5). On the contrary, nirK-type genomes encoded more genes 
of menaquinol-cytochrome c reductase (MQCRA, MQCRB, MQCRC) 
(Figure 6), which were seldom detected in nirS-type genomes. Thus, 
these two denitrifying communities prefer different quinone pools, 
which may reflect their oxygen tolerance (Braasch-Turi et al., 2022). 
Rhodobacter nitrogen fixation (Rnf) complex is a multifunctional re-
spiratory enzyme catalysing the oxidation of reduced ferredoxin to 
the reduction of NAD+ (Figure 6a). The genes responsible for the Rnf 
complex were predominantly encoded in nirS-type microbes. These 

results reflected that nirS-type denitrifying communities exhibited 
higher oxygen tolerance than nirK-type denitrifying.

The nirK-type denitrifying community widely encoded trans-
porter for ribose and metallic ions (znuABC, cbiOMQN) and biotin 
(bioY, ecfT) (Figure 5), which are critical cofactors for multiple cata-
lytic reactions. On the contrary, more nirS-type denitrifiers than nirK-
type denitrifiers encoded genes of nitrate- and nitrite-responsive 
sensors (narX, narL, narQ, narP) (Figure  5), which control gene ex-
pression in response to nitrate or nitrite regulation (Figure 6a). The 
gene envZ encodes a histidine kinase/phosphatase that regulates the 
phosphorylation state of the transcription factor encoded by ompR 
to respond to the osmolarity changes in the medium. These two 
genes show an apparent preference for the nirS-type denitrifying 
community (Figure 5), indicating that they have better adaptability 
to osmotic pressure changes (Figure 6a).

F I G U R E  5 Heat map showing the presence of the functional genes in each nirS- and nirK-type metagenome-assembled genomes (MAGs). 
The presence of a gene is denoted by a box, coloured by pathway assignment. The absence of a gene is represented with a white box. Cyt. c, 
cytochrome c oxidoreductase; Ribose, Ribose transport system; Rnf, Rhodobacter nitrogen fixation complex; TCS, two-component system.

DH_sed_bin.72
enrich_bin94

DH_sed_bin.211
DH_sed_bin.236

enrich_bin109
DH_sed_bin.23

DH_sed_bin.147
DH_sed_bin.134
DH_sed_bin.330
DH_sed_bin.145
DH_sed_bin.255
DH_sed_bin.312

enrich_bin97
DH_sed_bin.108
DH_sed_bin.136
DH_sed_bin.159
DH_sed_bin.160
DH_sed_bin.213
DH_sed_bin.244
DH_sed_bin.262
DH_sed_bin.292
DH_sed_bin.308
DH_sed_bin.321
DH_sed_bin.348
DH_sed_bin.361
DH_sed_bin.364
DH_sed_bin.377
DH_sed_bin.388

DH_sed_bin.7
DH_sed_bin.87
DH_sed_bin.88

enrich_bin1
enrich_bin11

DH_sed_bin.303
DH_sed_bin.77
DH_sed_bin.94

DH_sed_bin.278
DH_sed_bin.340

enrich_bin13
DH_sed_bin.225

DH_sed_bin.15
DH_sed_bin.50

DH_sed_bin.198
DH_sed_bin.113

DH_sed_bin.16
DH_sed_bin.299
DH_sed_bin.124
DH_sed_bin.144
DH_sed_bin.156
DH_sed_bin.178
DH_sed_bin.248

DH_sed_bin.34
DH_sed_bin.350
DH_sed_bin.357
DH_sed_bin.384
DH_sed_bin.391

DH_sed_bin.82
R

IP
1,

 p
et

A
C

YT
B,

 p
et

B
C

YT
1,

 p
et

C
bf

cA
, p

et
C

bf
cB

, p
et

B
bf

cC
, p

et
D

co
xD

, c
ta

F

Cyt. c

rn
fA

rn
fB

rn
fC

rn
fD

rn
fE

rn
fG

Rnf

rb
sB

rb
sC

rb
sA

Ribose

zn
uA

zn
uB

zn
uC

cb
iO

cb
iM

cb
iQ

cb
iN

bi
oY

ec
fT

Transporter

en
vZ

om
pR

na
rX

N
ar

L

TCS

K2
09

32
K2

09
33

K2
09

34
hd

h
nr

fA
nr

fH
pm

oA
, a

m
oA

pm
oB

, a
m

oB
ha

o

Nitrogen cycle Carbon fixation

nirK

nirK&S

nirS

fd
hB

fh
s

fo
lD

ac
sA

cd
hC

ac
sB

cd
hE

, a
cs

C
cd

hD
, a

cs
D

ac
sE

po
rA

po
rB

po
rD

po
rC

po
r

pp
c

ko
rA

ko
rB

ko
rC

ko
rD

ID
H

1
ac

cC
ac

cA
ac

cD
ac

cB
pp

c
pt

a
ac

kA

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17507 by H
ong K

ong U
niversity of Science and T

echnology, W
iley O

nline L
ibrary on [19/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  9 of 13MING et al.

We searched for other nitrogen transformation processes to 
further explore the nitrogen metabolic potential of two types of 
denitrifying communities. A noteworthy result was that denitrify-
ing communities harbour versatile nitrogen resource utilizers. Two 

nirS-type genomes (DH_sed_bin.198, DH_sed_bin.77) and three 
nirK-type genomes (DH_sed_bin.377, DH_sed_bin.211 and en-
rich_bin97) contained the complete anammox pathway (Figure 6b). 
Similarly, two nirS-type genomes (DH_sed_bin.350, enrich_bin11) 

F I G U R E  6 The metabolic characteristics of two denitrifying groups (a), and proposed interactions between two types of denitrifying 
communities and anammox bacteria in bioreactor systems (b). First, physicochemical properties differed during the transitions from Lake 
Donghu sediments to bioreactors, especially the nitrite and ammonium. Then, the possible coupling mechanisms were also proposed. Since 
the diverse nirK-type denitrifying community also harboured nrfA and nrfH genes, they could produce both nitrite and ammonium through 
different nitrogen-transformation processes, which could be further utilized as substrates by anammox bacteria. Thus, nirK-denitrifiers 
show stronger interactions with other members in microbial communities than nirS-type denitrifying community. MK, menaquinone; OSM, 
osmolality; UQ, ubiquinone.
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and 10 nirK-type genomes encode the genes (nrfA, nrfH) responsible 
for cytochrome c nitrite reductase, which catalysed nitrite reduc-
tion into ammonia. These results recovered more versatile metabolic 
potential for nitrogen resources in the nirK-type denitrifying com-
munity compared to the nirS-type denitrifying community, to some 
extent explaining their well-adapting status in bioreactor conditions.

We also investigated the bacterial carbon fixation of MAGs in 
communities since there was little accessible organic carbon in bio-
reactors. There were two nirS-type MAGs and five nirK-type MAGs 
encoded key genes (acsABCD) for the Wood–Ljungdahl pathway 
(Figure  6a), indicating a potential to reduce CO2 to acetyl-CoA. 
The essential genes for oxoglutarate ferredoxin oxidoreductase 
(korABCD) were widely encoded in eight nirS-type genomes, which 
catalyse succinyl-CoA to 2-oxoglutarate in reductive tricarboxylic 
acid (rTCA) cycle. The enzyme acetyl-CoA carboxylase (accABCD) in 
3-hydroxypropionate bicycle catalyses the acetyl-CoA to malonyl-
CoA and bicarbonate fixation, which were widely encoded in eight 
nirK-type genomes. The results indicated that denitrifying commu-
nities have diverse pathways to utilize the inorganic carbon in the 
systems to support their growth.

4  |  DISCUSSION

Denitrification is one of the essential processes to remove excess ni-
trogen from ecosystems, while two functionally equivalent nirK- and 
nirS-type denitrifying communities are key players. A previous study 
found that the nirS gene has a higher frequency of co-occurrence 
with nor and nosZ and is more likely to be involved in the complete 
denitrification than the nirK-type denitrifying community (Graf 
et al., 2014). Our results also showed that nirS always co-occurred 
with other denitrifying genes, suggesting that the nirS-type denitri-
fying community could be involved in the complete denitrification 
process and contribute more to N2O emissions than the nirK-type 
denitrifying community. Thus, revealing their adaptation mecha-
nisms in response to environmental stresses has important eco-
logical implications for developing novel technologies for nitrogen 
removal and N2O reduction. In this study, we analysed the evolution 
and metabolic landscape of nirK- and nirS-type denitrifying com-
munities from Lake Donghu sediments and bioreactor samples, and 
our results generally support our hypothesis that nirK- and nirS-type 
denitrifying communities have different phylogenetic diversity and 
metabolic versatility, enhancing their adaptation.

The evolutionary history of nirS- and nirK-type denitrifying 
communities is reflected in their phylogenetic diversity (Jones 
et  al.,  2008). In this study, metagenomic sequencing exhibited di-
verse phylogenetic diversity in putative denitrifying bacteria. The 
genes nirS and nirK are widely used as marker genes to study the 
ecological behaviour of denitrifiers in environments. Some organ-
isms contain more than one gene copy of nirS or nirK (Etchebehere 
& Tiedje, 2005). Besides, nirS and nirK have been found within one 
organism (Graf et  al.,  2014; Liu et  al.,  2020; Wittorf et  al.,  2018). 
These phenomena were all detected in our study, although the 

activity of these two genes needs further confirmation. Similarly, we 
found that the nirK-type denitrifying community exhibited greater 
taxonomic diversity than the nirS-type (Helen et  al.,  2016; Wei 
et al., 2015). Consistent with previous research (Braker et al., 2000; 
Hallin et al., 2018), we found that nirK presented more versatile evo-
lutionary origins than nirS based on phylogenetic analysis. A possi-
ble explanation is gene transfer, which could be derived from HGT 
(Etchebehere & Tiedje, 2005).

Evolutionary adaption is vital to successful survival in microbial 
communities in response to changing environmental conditions 
(Dmitrijeva et al., 2024; Hallin et al., 2018). Bacteria acquire foreign 
DNA, referred to as mobile genetic elements (MGEs), through trans-
formation, conjugation and transduction (Brito, 2021). The functions 
conferred by MGEs may contain elements that facilitate organism 
niche adaptation and survival in response to environmental stress, 
driving microbial evolution (Mishra et al., 2012; Skoog et al., 2023). 
For example, bacteria have evolved and adapted to antibiotic pres-
sure by acquiring antibiotic resistance genes (ARG) via HGT due to 
the massive antibiotic usage in farming (Alderman & Hastings, 1998; 
Mishra et  al.,  2012). We found frequent inter-phylum HGT, which 
is important for the recipient organism to acquire metabolic ca-
pabilities and occupy a novel ecological niche (Caro-Quintero & 
Konstantinidis, 2015). Previous phylogenetic analysis also found that 
NirK sequences from the same habitats tend to cluster more than 
sequences retrieved from highly related taxa (Enwall et  al.,  2010; 
Heylen et al., 2006; Wei et al., 2015; Yuan et al., 2012), confirming 
the possible HGT of this type denitrifying gene. Nevertheless, the 
tree topology of the NirS sequences agreed more with the phylo-
genetic tree based on 120 bacterial marker genes, indicating that 
the nirS gene tended to be inherited vertically and cannot be gen-
eralized in environmental communities. Therefore, nirK could have 
a higher transfer propensity than nirS. In this way, the nirS gene may 
encounter more gene losses in the communities if the hosts cannot 
survive the selection pressure. In contrast, nirK tends to act as MGEs 
and persist in microbial communities, providing the microbial com-
munity with a competitive edge against other organisms within the 
fluctuating environment (Brito, 2021). In this study, the transfer of 
nirS or nirK genes was not observed, but we found that nirS-type de-
nitrifiers have significantly lower HGT frequency than other denitri-
fiers. It is confirmed that contacting rates and shared environmental 
conditions favour HGT and selection for specific MGEs (Brito, 2021; 
Groussin et al., 2021). Thus, the low abundance of the nirS-type de-
nitrifying community may reduce the chance of cell-to-cell contact 
or access to free DNA in the environment, which in turn affects their 
resistance to environmental stresses.

The physiological and metabolic characteristics influence the 
ecological niche differentiation of nirS- and nirK-type denitrifying 
communities. Microbial communities residing in bioreactors expe-
rienced specific selection stresses, such as oxygen limitation, nitrite 
concentration upshift, increasing temperature and ammonia limita-
tion in an inorganic medium (Zhang et  al.,  2023). Here, we found 
that the nirS-type denitrifying community exhibited a high tolerance 
for oxygen and osmotic pressure. Consistent with previous studies, 
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their denitrifying activity was more sensitive to the nitrate and ni-
trite concentration in the environment (Goberna et  al.,  2021). So, 
the oxygen, nitrate and nitrite changes mainly explained their abun-
dance. Nevertheless, the nirS-type denitrifying community were 
found to widely encode Rnf complex systems, which could act as 
versatile metabolic exchange centres, including N2-fixation (Schmehl 
et al., 1993), carbon dioxide-fixation (Biegel et al., 2009) and utiliza-
tion of low-energy substrates (e.g., ethanol and lactate) (Neumann-
Schaal et al., 2019; Seedorf et al., 2008). These indicated that the 
nirS-type denitrifying community has a powerful metabolic system 
for energy conservation, enabling them to exhibit a relatively stable 
growing status (Heylen et al., 2006). On the contrary, the nirK-type 
denitrifying community was more adaptable to anaerobic environ-
ments. They have versatile transporters for ribose, an essential com-
ponent of nucleic acids, suggesting that they may utilize extracellular 
nucleic acids as nutrients. Additionally, more transporter genes for 
metallic ions and biotins are present in the nirK-type denitrifying 
community compared to the nirS-type. As microbial communities 
were cultivated oligotrophically using inorganic carbon, the diverse 
transporters encoded in the nirK-type denitrifying community fa-
cilitated their growth by improving sensitivities to nutrients in the 
environments. Furthermore, we found that they could be involved 
in multiple nitrogen-metabolism pathways, including anammox and 
dissimilatory nitrate reduction to ammonium (DNRA), which may 
strengthen the interaction within microbial communities through 
the coupling of multiple metabolic processes (Figure 6b). Specifically, 
the nirK-type denitrifying community could either reduce nitrite into 
nitric oxide through the denitrification process or reduce it into am-
monium through the DNRA process. The product from these two 
processes could be utilized as substrate by anammox bacteria, which 
were proven to exhibit high activity in bioreactors. Together, our re-
sults explained to some extent why the nirK-type denitrifying com-
munity could grow well in bioreactors.

5  |  CONCLUSION

Our metagenome sequencing analysis unveiled different evolu-
tionary and metabolic adaptation strategies of nirS- and nirK-type 
denitrifying communities in response to environmental changes. We 
found that the nirS-type denitrifying community did not receive as 
many genes as the nirK-type denitrifying community through HGT, 
which may explain their decreased diversity in response to changing 
environmental conditions. The phylogeny of two marker genes indi-
cated that the nirS gene was more evolutionarily conservative, with 
a higher propensity to be lost than the nirK gene in response to envi-
ronmental changes. On the contrary, the nirK gene exhibited diverse 
evolutionary origins, further supporting the idea that they could be 
generalized within the communities through HGT and develop more 
strategies for adapting to environmental changes. Also, the meta-
bolic analysis revealed that the nirS-type denitrifying community 
had a relatively stable metabolic system for energy conservation 
to help them survive in bioreactor systems. In contrast, nirK-type 

denitrifying community tended to adapt to oxygen-limited environ-
ments, such as the bioreactor systems. Nevertheless, their involve-
ment in the multiple nitrogen-metabolism pathways may contribute 
to interacting with other microbial community members through 
coupling multiple metabolic processes. These results explained why 
the nirK-type denitrifying community could grow well in bioreac-
tors. Therefore, our study provides novel insights into the ecological 
differentiation mechanism of nirS- and nirK-type denitrifying com-
munities and contributes to more precisely estimating their roles in 
nitrogen cycling networks in this pressing global climate change and 
anthropogenic pollution.
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